NEGATIVE FILAMENT TENSION IN LUO-RUDY MODEL OF CARDIAC TISSUE

S. Alonso¹, A. V. Panfilov²

- (1) Fritz-Haber-Institut, Berlin, Germany.
- (2) Theoretical Biology, Utrecht University, The Netherlands.

Rotation of a scroll ring is non-stationary: its

filament drifts in space. Two main

drift regimes are: filament contraction (positive tension) and filament expansion (negative tension) [1].

Negative filament tension may result in instability that was studied for linear filaments and scroll rings in simplified models of excitable medium [2,3].

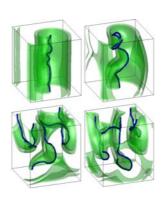
Aim of this study is to find if the negative filament tension and instabilities are possible in an ionic model of cardiac tissue.

We use an Luo-Rudy phase 1 model:

$$\frac{\partial V}{\partial t} = -I_{ion} + D\Delta V$$

Here V is the transmembrane potential, t is time, D is the diffusion coefficient and I_{ion} is the sum of all transmembrane ionic currents.

For I_{ion} we use: $I_{ion} = I_{Na} + I_{si} + I_{K} + I_{K1} + I_{Kp} + I_{b}$ and the corresponding equations for gating variables as described in [4].


Parameter settings are as in the original model

except for the I_{si} , I_{Na} conductances.

As we can see in the figure negative filament tension exists in the Luo-Rudy phase 1 model for parameter

values corresponding to a low excitable cardiac tissue. Negative filament tension can induce electrical turbulence in a homogeneous slab of cardiac tissue.

- [1] A. V. Panfilov and A. N. Rudenko, Physica D 28, 215 (1987).
- [2] V. N. Bikthasev, A. V. Holden and H. Zhang, Phil. Trans. R. Soc. Lond. A 347, 611 (1994).
- [3] S. Alonso, F. Sagués and A. S. Mikhailov, Science **299**, 1722 (2003).
- [4] C. Luo and Y. Rudy, Circ. Res. 68, 1501 (1991).

