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Whenever an image is flashed briefly before your eyes,
or you hear a sudden sound, you are usually able to recall
the information presented for a few seconds thereafter.1

In fact, it is most vivid at first but fades gradually.
According to our current understanding of neural net-
works, memories are stored by strengthening and weak-
ening the appropriate connections (synapses) between
neurons.2 But these biochemical processes take place on
a timescale of minutes.3 Most models of short-term mem-
ory get round this problem by assuming that the informa-
tion in the stimulus is (sometimes inexplicably) already in
the brain, which therefore has only to activate the correct
pattern.5 However, this clashes with everyday experience
as well as with more rigorous observation.4 Mechanisms
of cellular bistability have also been proposed, such that
each neuron has an individual memory.6 But considering
how noisy real neurons are, it seems difficult for these to
be robust enough.7
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FIG. 1. Performance η against probability of rewiring λ for
modular networks, from Monte Carlo (MC) simulations; pat-
terns are “shown” to the system with different intensities δ.
For intensities similar to the input the average neuron receives
from its neighbours, there is an optimal value of λ (a measure
of network modularity). Inset: Typical time series for λ = 0.5
(bad performance), 0 (intermediate), and 0.25 (near optimal).

Here we suggest an entirely different mechanism –
Cluster Reverberation – whereby simple model neurons
can store novel information for a short time (a few sec-
onds) without previous learning or individual cellular
memory8 (Fig. 1). This is achieved thanks to metastable
states of activity that arise from the clustered nature
of the underlying network topology. We show that this
mechanism is robust to the kind of model neuron used
(which can be very noisy) and to network structure. Fur-
thermore, we predict that forgetting will occur according

to quasi-power laws (Fig. 2), in the same way as happens
for nonequilibrium magnetic systems or Griffiths phases
on networks; and that there will be local synchronization
of synaptic inputs.9 Both these results fit in with exper-
imental findings from psychology10 and neurobiology.11

We conclude by suggesting some in vitro and in vivo

experiments that could be done to test whether the brain
does indeed make use of this mechanism.

100

10-1

10-2

10-3

10-4

105104103102101

τ

p(
τ)

100

10-1

10-2

10-3

10-4

105104103102101

τ

p(
τ)

 1

 1.2

 1.4

 1.6

 1.8

 2

107105103101

τ

β(
τ)

T=1

 1

 1.2

 1.4

 1.6

 1.8

 2

107105103101

τ

β(
τ)

T=2

 1

 1.2

 1.4

 1.6

 1.8

 2

107105103101

τ

β(
τ)

T=3

FIG. 2. Left panel: Distribution of escape times τ for
λ = 0.25 and noise T = 2, from MC simulations. Slope is
for the theoretical prediction at τ = 103 (β ≃ 1.35). Other
parameters as in Fig. 1. Right panel: Exponent β of the
quasi-power-law distribution p(τ) as obtained analytically, for
noise T = 1, 2 and 3.
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