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Nematic fluids in confined geometries are a subject of
much interest from both fundamental and technological
points of view. In these systems there exists competi-
tion between orientational ordering, anchoring (favoured
director alignment at surfaces) and elasticity. The equi-
librium configuration depends sensitively on the imposed
conditions. This interplay involves frustration and for-
mation of defects. Here we consider two-dimensional
(2D) nematics, which are easier to analyse and at the
same time present some interesting peculiarities1,2. Re-
cently vibrated quasimonolayers of macroscopic particles
with anisotropic shape have been studied, using circu-
lar containers; patterns and behaviours similar to those
found in thermal anisotropic fluids were observed, in-
cluding nematic and smectic ordering3. Our recent, ex-
ploratory theoretical work on this problem considered the
thermodynamics, phase behaviour and structure using a
simple version of density-functional theory4,5.
In the present work we use Monte Carlo (MC) simu-

lation to study the ordering properties of a fluid of rect-
angles in a circular cavity. The rectangles have a length-
to-width ratio of 40, with L the length and σ the width;
this value was dictated by the recent experiments on vi-
brated quasimonolayers of Galanis et al.6. Our aim is to
compare our simulation results with those obtained from
the density-functional theory, on the one hand, and with
those coming from the experiments on granular matter,
on the other, in an effort to shed some light on the true
properties of the equilibrium system, and also on the sim-
ilarities between a thermal system and a granular system
driven by dissipation.
In bulk conditions, our model fluid presents stable

isotropic and nematic phases, with a continuous phase
transition at some critical value of density. In the con-
fined geometry, and due to the circular geometry, the
fluid is subject to frustration since particles try to re-
spect the orientation favoured at the surface (long axes
of particles along the tangential direction), while at the
same time elastic modes are excited due to the director
distorsion. These factors imply the existence of defected
regions in the fluid, where the nematic director is not
defined.
In our MC experiments on small cavities (R < 15L),

we obtain a collection of equilibrium configurations from
the very dilute régime to high packing densities7. Parti-
cles are added one by one, and every time a particle is
added we thermally equilibrate the fluid. Fig. 1 shows

two structures for R = 7.5L: one at low density (top pan-
els), where the fluid adopts an isotropic configuration;
and another at high density (bottom panels), where the
fluid is in a nematic state, but two line structures (do-
main walls) are created at opposite sides with respect to
the cavity centre. The walls fluctuate in position quite
rapidly. In this configuration director distortion is min-
imised, while at the same time surface energy is opti-
mised. For such small cavity radii we do not observe
the expected structure with tangential symmetry and a
point defect at the centre5. Changes in the structure of
the fluid for larger cavities and connection with density-
functional theory are discussed.
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FIG. 1. Panels from left to right: particle configurations
and packing fraction, uniaxial order parameter and director
tilt angle local fields. Top panels correspond to a number of
particles N = 800, while the bottom panels pertain to the
case N = 1970. In all cases the cavity radius is R = 7.5L.
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