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We have investigated the dynamics of the morphology
of Fisher waves subjected to small intrinsic noise, as de-
scribed by the Fisher-Kolmogorov-Petrovsky-Piscounov
(FKPP) equation,1

∂ρ

∂t
= D∆ρ+ ρ− ρ2 +

√

ρ/N η(x, t), (1)

where η(x, t) is a Gaussian white noise and N is approx-
imately the number of particles per unit volume.2 For
N = Nc, equation (1) undergoes a phase transition be-
tween an active phase (ρ 6= 0) and an absorbing state
(ρ = 0).4–6 In addition, for very large N ≫ Nc the FKPP
equation displays pulled fronts in which the active phase
invades the absorbing state.3 Although intrinsic noise is
really small for large N , it produces strong corrections
to the velocity of the front when compared to the deter-
ministic N → ∞ equation.8

FIG. 1. Fisher waves: White lines correspond to equipo-
tential lines at ρ = 1/2 (front) and ρ = 1/N (cut-off). The
light gray color represents the area where ρ = 0.

In this communication we study whether those strong
corrections also happen in the kinetic roughening of the
front. Using a non-negativity preserving algorithm to
integrate equation (1),5,6 we have found that the large-
scale fluctuations in the morphology of the front line, see
Fig. 1, belong to the 1D Kardar-Parisi-Zhang (KPZ) uni-
versality class.7 As in the zero-dimensional case,9 we find
that the dynamics of the front in the cut-off microscopic
line where ρ ≃ 1/N (see Fig. 1) drive the dynamics of
the macroscopic system (see Fig. 2). On the left panel
of this figure, we show the time evolution of the rough-
ness for both the front and the cut-off lines. Although
the small-scale behavior is strictly different (see zoom
in inset), the large-scale properties are indistinguishable.
Hence, the 1D KPZ asymptotic behavior of the cut-off
line is inherited by the front line, see right panel in the
same figure, where the power spectral density function
(PSD) is shown for both lines at long times. Notice that

the strong short-scale fluctuations in the cut-off line are
suppressed for the front, that looks much smoother at
such scales, see Fig. 1. Morever we have also found that
the 1D dynamics of the cut-off line propagates back to
the front line (see inset of Fig. 2) and that it happens
with a time ag that depends logarithmically on N .
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FIG. 2. Left: Roughness of the front and the cut-off lines
vs time (single realiaztions). Inset: Zoom of main panel.
Right: PSD functions of front (lower curves) and cut-off (up-
per curves) lines vs wave-vector q for times t > 104, for two
values of N . For small q (long-rage correlations), the front
and cut-off display the same behavior, which is not the case
for small q.

We have thus found that the large-scale dynamics of
the macroscopic front is determined by the evolution of
the region that is driven by microscopic fluctuations,
which is an unusual effect in front dynamics and creates
macroscopic observable effects from microscopic noise.
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