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Lamellar fragments of keratocytes are pieces of the
actin-based motile machinery extracted from those cells.
These fragments lack nucleus, microtubules and most or-
ganelles, but retain the minimal ingredients to generate
motion. Experimental observations1 show that such frag-
ments are capable to generate and sustain spontaneous
directional motion if the circular symmetry is externally
or spontaneously broken. A theoretical understanding of
this phenomenon is still lacking. In particular, an in-
teresting open question is whether actin polymerization
forces plus friction, without the action of molecular mo-
tors, are sufficient to sustain motion.
We base our study on a physical model that was re-

cently introduced by Callan-Jones et al2. It assumes a
polar nematic continuous description3 of the gel of actin
and assumes that the dynamics of the polymerization can
be slaved to the slow membrane dynamics. Assuming
that actin treadmilling is controlled by polymerization
at the membrane with velocity vp and uniform depoly-
meriztion in the bulk, the velocity field can be shown to
satisfy Darcy’s law and therefore be reduced to a lapla-
cian pressure field with appropriate boundary conditions
at the moving boundary. The dynamics is then reduced
to a free-boundary problem which is similar to the classic
problem of viscous fingering in Hele-Shaw cells4. Simi-
larly, the laplacian nature of the problem allows to take
advantage of conformal mapping techniques.
One of the central results of this work is the proof of

an exact expression for the instantaneous velocity of the
center of mass (RA) that establishes and interesting con-
nection between shape and motility,

ṘA =
vpL

A
(RL −RA) , (1)

where RA and RL are the center of masses of the area and
of the contour, respectively. A stands for the area and L
for the perimeter. This identity establishes a direct con-
nection between the instantaneous velocity of the center
of mass and simple geometrical properties of the contour.
In other words, regardless of the actual evolution of the
shape, at any time we can obtain the instantaneous veloc-
ity of the center of mass from the shape. This reduces the
controversial question on the existence of steady motile
shapes in this problem to the existence of asymmetric
steady shapes, a problem that is more amenable to ana-
lytical and numerical treatment. With the help of con-
formal mapping techniques, we prove numerically that
such solutions exist and some of them are stable.
Extending a previous linear stability analysis of the cir-

cular shape2, we also show that the mechanism to initiate
motion through symmetry breaking is necessarily nonlin-
ear. To pursue the nonlinear character of the motility

mechanism we also perform the center manifold reduc-
tion of the dynamics close to different bifurcation points,
unraveling a rather complex mathematical structure. In
particular, we find that there is an infinity of branches of
traveling solutions that can be accessed analytically. Re-
markably, the velocity of these solutions vanishes in the
center manifold. With the help of high-precision arith-
metics (64 digits), we have shown numerically that the
velocity of these solutions as one approaches the bifurca-
tion point is actually exponentially small, with the gen-
eral form ṘA ∝ exp(−a/gni ), where gi is the distance to
the bifurcation point of the i − th mode. For i = 2, we
have a ≈ 20.6, and n ≈ 1/6. This is a remarkable exam-
ple of asymptotics beyond all orders that is reminiscent
of the one associated to the steady-state selection mecha-
nism in viscous fingering4. Whether this analogy entails
a deeper connection is yet to be elucidated.

FIG. 1. Sample of motile steady shapes.
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3 K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, and K. Seki-
moto, Eur. Phys. J. E 16, 5 (2005)

4 J. Casademunt, Chaos 14, 809 (2004)
5 F. Ziebert, S. Swaminathan and I. S. Aranson, J. R. Soc.
Interface, 2011.


