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As is well known, the hard-sphere (HS) model is of
great importance in liquid state theory from both aca-
demic and practical points of view. The model is also
attractive because it provides a nice example of the
existence of non-trivial exact solutions of an integral-
equation theory, namely the Percus–Yevick (PY) theory.
As generally expected from an approximate theory, the

radial distribution function (RDF) provided by the PY
integral equation suffers from thermodynamic inconsis-
tencies, i.e., the thermodynamic quantities derived from
the same RDF via different routes are not necessarily mu-
tually consistent. In particular, the PY solution for HSs
of diameter σ yields the following expression for the com-
pressibility factor Z ≡ p/ρkBT (where p is the pressure, ρ
is the number density, kB is Boltzmann’s constant, and
T is the temperature) through the virial (or pressure)
route:

Zv(η) =
1 + 2η + 3η2

(1− η)2
. (1)

Here, η = π
6
ρσ3 is the packing fraction and the subscript

v is used to emphasize that the result corresponds to the
virial route. In contrast, the compressibility route yields

Zc(η) =
1 + η + η2

(1− η)3
. (2)

Equation (2) is also obtained from the scaled-particle
theory (SPT). The celebrated and accurate Carnahan–
Starling (CS) equation of state (EOS) is obtained as the
simple interpolation

ZCS(η) =
1

3
Zv(η) +

2

3
Zc(η) =

1 + η + η2 − η3

(1− η)3
. (3)

Except perhaps in the context of the SPT, little atten-
tion has been paid to the chemical-potential route to the
EOS of HSs. In particular, the possibility of obtaining
the EOS via this route by exploiting the exact solution
of the PY equation for HS mixtures seems to have been
overlooked. The aim of this work is to fill this gap and
derive the result1

Zµ(η) = −9
ln(1− η)

η
− 8

1− 31

16
η

(1− η)2
, (4)

where the subscript µ in Eq. (4) denotes that the com-
pressibility factor is here obtained via the chemical-
potential route. Equation (4) differs from Eqs. (1) and
(2) in that it includes a logarithmic term and thus it is
not purely algebraic. Nevertheless, Zµ(η) is analytic at
η = 0 and provides well-defined values for the (reduced)
virial coefficients bn defined by Z(η) = 1+

∑

∞

n=2
bnη

n−1.
Comparison of the first ten virial coefficients obtained

from Eqs. (1), (2), and (4) with the exact analytical
(n = 2–4) and Monte Carlo values shows that those given
by the chemical-potential route are more accurate than
those from the virial route, although less than the ones
from the compressibility route. This suggests the pos-
sibility of exploring a CS-like interpolation of the form
Zµc(η) = αZµ(η) + (1 − α)Zc(η) with α > 1

3
. A simple

and convenient choice is α = 2

5
. Thus,

Zµc(η) =
2

5
Zµ(η) +

3

5
Zc(η)

= −

18

5

ln(1− η)

η
−

13− 50η + 28η2

5(1− η)3
. (5)

The superiority of Zµc over ZCS is confirmed by Fig. 1,
where the differences Zµc − ZCS and ZMD − ZCS (where
ZMD denotes molecular dynamics simulation values2) are
compared. As can be seen, Zµc is closer than ZCS to ZMD

up to η ≃ 0.46.
Equation (4) can be further extended to additive mix-

tures with the result

Zµ =
1

1− η
+ 3
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]

, (6)

where Mn ≡

∑

i xiσ
n
i .
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FIG. 1. Plot of Zµc(η) − ZCS(η) (solid line) and
ZMD(η)− ZCS(η) (circles).
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