
Stability of Boolean Multiplex Networks

Emanuele Cozzo, Alex Arenas, Yamir Moreno∗

Instituto de Biocompytación y F́ısica de Sistemas Complejos

Universidad de Zaragoza

Zaragoza 50018, Spain

Nearly four decades ago, Random Boolean Networks
(RBNs) were introduced as a way to theoretically ad-
dress several scientific challenges regarding the descrip-
tion and dynamics of biochemical networks1. Since then,
this framework has been successfully applied to model
theoretically and computationally the biochemical and
genetic control of cells2. RBNs consider that each gene of
a genetic regulatory network is a node of a directed graph,
the direction corresponding to the effect of one gene on
the expression of another. Additionally, the nodes can
be in one of two states: they are either on (1) or off (0)
- i.e. in the case of a gene its target protein is expressed
or not. The system so composed evolves at discrete time
steps. At each time step nodes are updated according to
a boolean rule assigned to each node that is a function of
its inputs. Notwithstanding the high simplicity of RBNs
models, they can capture the behavior of some real regu-
latory networks3 allowing for the study of several dynam-
ical features, above all their critical properties. However,
although some coupled Boolean networks have been re-
cently investigated4,5, the vast majority of existent works
have considered RBNs as simplex networks, in which a
single graph is enough to represent all the interactions a
given gene is involved in.
The previous description implicitly assumes that all

biochemical signals are equivalent and then collapses in-
formation from different pathways. Actually, in cellular
biochemical networks, many different signaling channels
do actually work in parallel, i.e., the same gene or bio-
chemical specie can be involved in a regulatory interac-
tion, in a metabolic reaction or in another signaling path-
way. Therefore, a more realistic set up will be obtained
by considering the participation in different pathways as
different interconnected layers of interaction, something
more consistent with a multiplex network6,7 representa-
tion (see Fig. 1). Namely, each level in the multiplex
would represent the different signaling pathways or chan-
nels the element participates in.
In this work, we study the stability of Boolean net-

works defined at multiple topological layers. In partic-
ular, we inspect a Boolean multiplex network model, in
which each gene is a node that participates in one or more
layers of interactions. Moreover, we focus on the case of
canalizing rules, which has been shown to be relevant
to genetic networks. Boolean functions are canalizing if
whenever the canalizing variable takes a given value, the

canalizing one, the function always yields the same out-
put. Capitalizing on a semi-annealed approximation, we
analytically and numerically study the conditions defin-
ing the stability of the aforementioned system and show
that the interplay between the different layers can be
enough to stabilize different levels or the whole system
even for parameter values where the sub-systems, if iso-
lated, were unstable.

FIG. 1. The multiplex network is built up by randomly
connecting N nodes per layer. With probability σ, each of
the N nodes can be present in both layers. Therefore, the to-
tal number of different nodes in the system is Ñ = (2− σ)N .
In the example of the figure, the whole system is made up of
Ñ = 13 nodes, of which 3 are present in the two layers and
there are 5 additional nodes per layer, therefore N = 8 and
σ = 3/8.
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