Signal integration shapes the dynamics of neuronal networks

Leonardo L. Gollo^{*}, Claudio Mirasso, Víctor M. Eguíluz IFISC, Instituto de Física Interdisciplinar y Sistemas Complejos CSIC-Universidad de las Islas Baleares 07122-Palma de Mallorca, Spain

Cognition and consciousness emerge from the outcome of a multitude of interconnected neurons. In this scenario, the integration of incoming inputs from neighboring neurons plays a crucial role. We find that this integration shapes the macroscopic dynamics of the neuronal network¹.

Taking advantage of general aspects of phase transitions and critical phenomena, several features (including distinction of external stimulus², transmission and storage of information^{3,4}, etc.) become optimized near the critical state. Supported by some experimental evidences, the critical brain hypothesis conjectures that the brain operates at a critical point of a continuous phase transition⁵.

We address how the features of the neuronal process of signal integration affects the critical brain hypothesis, the dynamic range, and in general the collective behavior of a network of excitable units. By means of numerical simulations and a mean-field approach, we explore the nonequilibrium phase transition in the presence of integration. We show that the firing rate in random and scale-free networks undergoes a continuous or a discontinuous phase transition depending on both the integration time (τ) and the density of integrator units (d), as depicted in Fig. 1. Moreover, in the presence of external stimuli, we find that a system of excitable integrator units operating in a bistable regime largely enhances its dynamic range.

These results are compatible with bi- and multi-stable dynamics (which represent an important part of the brain's dynamic repertoire), and constitute a challenge to the conceptual framework of the critical brain hypothesis.

FIG. 1. Dependence of the nature of the phase transition order on the integration time τ for networks (N = 5000) composed of a mixture of both integrators, which have a density d of nodes with integration threshold $\theta = 2$, and nonintegrators ($\theta = 1$). The red solid (black dashed) line corresponds to the random (scale-free) network. The left-hand side of the curve corresponds to a continuous phase transition whereas the right-hand side corresponds to a discontinuous phase transition. The black open symbol depicts the mean-field shift in the order of the phase transition.

- ¹ L. L. Gollo, Claudio Mirasso, Víctor M. Eguíluz, Phys. Rev. E, 85, 040902 (2012).
- 2 O. Kinouchi and M. Copelli, Nat. Phys. 2, 348 (2006).
- ³ D. Plenz and T. C. Thiagarajan, Trends Neurosci. 30, 101 (2007).
- ⁴ J. M. Beggs, Philos. Trans. R. Soc. London A 366, 329 (2008).
- ⁵ D. R. Chialvo, Nat. Phys. 6, 744 (2010).

^{*} leonardo@ifisc.uib-csic.es