
The trophic coherence of networks: Diversity and stability reconciled?

Samuel Johnson∗, Virginia Domı́nguez-Garćıa†, and Miguel A. Muñoz†
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Will a large, complex system be stable? Robert May
asked this question in 1972, and showed that the answer
was, in general, no – at least if the interactions between
elements were randomly placed.1 In the case of ecosys-
tems, as well as financial and other complex systems,
both received wisdom and empirical research suggested
that size and link density increased stability, so the re-
sult became known as May’s Paradox. In ecology the
“diversity-stability debate” rages on, and it has often
be conjectured that large, complex (i.e., dense) ecosys-
tems are stable thanks to some unidentified structural
property.2

FIG. 1. Networks generated with the Preferential Preying
Model (PPM), using the number of species and links of the
Chesapeake Bay food web, for T = 0.001 (left) and T = 10
(right). The height of nodes represents their trophic level, de-
fined for each node as the mean trophic level of its incoming
nodes (e.g., prey), plus one. The network on the left has max-
imum trophic coherence, while the one on the right is highly
incoherent; the parameter q captures this.

We show that trophic coherence – a hitherto ignored
feature of food webs which current structural models fail
to reproduce – is significantly correlated with ecosystem
stability, whereas size and link density are not.3 Together
with cannibalism, trophic coherence accounts for over
80% of the variance in stability observed in a 16-food-
web dataset. We propose the Preferential Preying Model
(PPM), whose single free parameter, T , sets the degree
of trophic coherence. For T ≃ 0 we obtain maximally
coherent networks (left panel of Fig. 1), whereas very
incoherent structures (similar to those produced by cur-
rent food-web models) ensue from a high T (right panel
of Fig. 1). By adjusting T to the empirical coherence of
food webs, the PPM predicts their stability much more
accurately than do other models, and is at least as suc-
cessful as regards all other structural features analysed.

Most remarkably, the PPM shows that stability can
increase with size and link density if networks are suf-
ficiently coherent. As shown in Fig. 2, while for high
T stability decreases with size and density according to
the May-Wigner law, as in other food-web models, below
a certain value of T the size-stability relationship is in-
verted. This suggests that it is trophic coherence which
accounts for the high stability of large, dense ecosystems
– such as rainforests or coral reefs – and may be signif-
icant for other complex dynamical systems. This result
raises the concern that loss of a few elements (e.g., species
or banks) could push a system into a regime of inherent
instability. On the other hand, it may provide a way of
diagnosing the risk of such a “tipping point”.
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FIG. 2. Real part of the leading eigenvalue of the inter-
action matrix, Re(λmax), against number of nodes, S, for
networks generated with the PPM for different values of the
parameter T . Re(λmax) is the degree of self-regulation (e.g.,
intra-species competition in an ecosystem) required for the
system to be (locally) stable; thus, the lower Re(λmax), the
more stable we consider the network. The density of links
(complexity), K, is K = Sα, with α = 0.5 as recent estimates
find for food webs. Inset: Slope of the stability-size curve, γ,
against T for different exponents α.
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