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Several life-threateaning arrhythmias are related to
electrical wave instabilities in the heart. At rest, there
is a large gradient of ionic concentration across the my-
ocytes’ cell membrane. Given an external stimulus, ion
channels at the membrane open, allowing the flux of ions,
that results in an increase in transmembrane electrical
potential - the depolarization of the cell. This front then
propagates along tissue, triggering the contraction of the
cardiac cells in a coordinated manner. Instabilities of
propagation give rise to wavebreak, the formation of reen-
try (i.e., tachycardia) and, eventually, a disordered elec-
trical wave pattern (i.e., fibrillation) in which the heart is
not able to pump blood and death intervenes in a matter
of minutes.
In all the former mechanism, tissue contraction is usu-

ally thought to be of no relevance, being just a con-
secuence of electrical depolarization. However, several
studies suggest that it can play an important role in sus-
taining and/or inducing the instability. In this contribu-
tion we will show that a small amount of contraction can
in fact give rise to a wave instability, termed alternans,
followed by wave blocks and the initiation of reentry.
At a cellular level, an alternans rhythm is character-

ized by a beat-to-beat change in the duration of the
depolarized phase, or action potential (AP). In tissue,
this may result in spatially homogeneous patterns of
oscillations (concordant alternans, CA), or in domains
of out-of-phase oscillations (discordant alternans, DA)1.
Remarkably, besides all the complex microscopic de-
tails neccessary to properly characterize the dynamics of
the transmembrane potential, the main characteristics of
this instability can be captured considering a mesoscopic
approach2. In this, a description in terms of coupled
maps, relating the action potential duration (APD) and
the conduction velocity (CV) of the AP, at a given point,
with the local time lapse between the end of an excita-
tion and the beginning of the following one (diastolic in-
terval, DI), reproduces the main characteristic observed
during cardiac alternans. Furthermore, close to the tran-

sition to alternans, the small oscillations in the APD have
been shown generically to obey a Ginzburg-Landau type
equation with an additional nonlocal term that causes
spontaneous nucleations of domains giving rise to DA3.

We have recently used a simplified model of car-
diac excitation-contraction coupling to study the effect
of tissue deformation on the dynamics of alternans4.
We showed that small stretch-activated currents pro-
duce large effects, causing a transition from in-phase
to off-phase alternations (i.e. from concordant to dis-
cordant alternans) and to conduction blocks. This ef-
fect is the result of a generic change in the slope of the
CV-restitution curve due to electromechanical coupling.
Thus, excitation-contraction coupling plays a relevant
role in the transition to reentry and fibrillation. This
effect can be traced to a change in the spatial and func-
tional dependence of the CV, that modifies the solutions
of the coupled maps. In this contribution, we elaborate
further on the details of this transition, analysing the
solutions of the coupled maps equations close to the on-
set of alternans. We find a good agreement between the
full ionic equations, the coupled map equations and the
reduced description in terms of Ginzburg-Landau am-
plitude equations, therefore stressing the usefulness of
studying simplified models for the undertanding of com-
plex spatio-temporal phenomena in cardiac tissue.
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