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Historically, we can fairly attribute the introduc-
tion and development of Multi-Objective Optimization
(MOO) to economists and engineers. Economic setups
usually imply satisfying conflicting interests and thus
they pioneered the field quite naturally. Meanwhile, we
owe to engineers the development of efficient algorithms
to approximate the solutions to complicated MOO prob-
lems numerically. Engineering and Economy are rela-
tively peripheral to natural sciences. A side effect of this
is that MOO had little impact in areas such as ecol-
ogy or molecular and systems biology. Only recently
we find outstanding applications of MOO to these dis-
ciplines which put optimization and natural selection in
a different, richer perspective1,2. Also physics did not
pay much attention to MOO despite that a large litera-
ture exists linking Single Objective Optimization (SOO)
algorithms–such as the Metropolis-Hastings or Genetic
Algorithms–and their dynamics to statistical mechanics.
Contributions from complex systems usually dealt

with MOO problems by integrating the many optimiza-
tion targets into single fitness functions using arbitrary
metaparameters3,4 as in:

Ω = λt1(x) + (1− λ)t2(x), (1)

with Ω the global fitness, λ a bias (the metaparameter)
that assigns different and arbitrary importance to t1(x)
and t2(x). These t1(x) and t2(x) are the multiple ob-
jectives that we would wish to optimize simultaneously
in an ideal scenario. Of course, equation 1 generalizes
to any number K of target functions tk(x). Note that
the many targets for optimization can be conflicting and
thus impose a trade-off upon the MOO solutions. Sys-
tems researched using this SOO methodology usually re-
port interesting features such as phase transitions or the
existence of critical regimes3,4.

In a recent paper5 we provide an elegant and ro-
bust theoretical framework to study systems that involve
MOO and their behavior when the different objectives
are integrated into SOO problems, such as in equation
1. Our theory relies on the interplay between the Pareto
front (a geometric object that encompasses all MOO opti-
mal solutions and that defines the best trade-off possible

given the MOO problem) and a hyperplane defined by
the global fitness function.
We find out that phase transitions are parsimoniously

and precisely explained within our framework–also for
thermodynamics. We propose that our theory provides a
very robust generalization of the concept of phase transi-
tion to any MOO system whose targets are collapsed into
SOO by some natural or artificial means. Because the re-
sults are valid for any such a system, our generalization
of phase transitions does not rely on partition functions
and does not require–in principle–that systems are er-
godic, although the precise implications of our theory for
non-ergodic systems still requires further investigation.
Altogether, the theory allows us to safely talk about

phase transitions in a series of systems ranging from biol-
ogy to social dynamics knowing that a rigorous definition
exists. Our framework provides very robust groundings
for MOO, which were missing in the literature, and fur-
thers our understanding about solutions to MOO prob-
lems. Finally, the novelty of our theory is revealed in
that state of the art contributions1,2 lack any references
to our findings.
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