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One of the most powerful concepts in contemporary
Statistical Mechanics is the idea of universality, by which
microscopically dissimilar systems show the same large
scale behavior, provided they are controlled by interac-
tions that share dimensionality, symmetries, and conser-
vation laws. In complex systems it becomes enormously
simplifying, as significant descriptions can be put forward
on the basis of the general principles just mentioned.
Celebrated non-equilibrium systems include those with

generic scale invariance, displaying criticality throughout
parameter space. Examples are self-organized-critical
and driven-diffusive systems, or surface kinetic rough-
ening. Indeed, the paradigmatic Kardar-Parisi-Zhang
(KPZ) equation for a rough interface,

∂th = ν∇2h+
λ

2
(∇h)2 + η(x, t), (1)

is very recently proving itself as a remarkable instance
of universality. The exact asymptotic height distribution
function has been very recently obtained for d = 1:1 it is
given by the largest-eigenvalue distribution of large ran-
dom matrices in the Gaussian unitary (GUE) (orthogo-
nal, GOE) ensemble, the Tracy-Widom (TW) distribu-
tion, for globally curved (flat) interfaces, as proposed in
Ref. 2 and reviewed in Ref. 3. Beyond their fascinating
connections with probabilistic and exactly solvable sys-
tems, these results are showing that, not only are the crit-
ical exponent values common to members of this univer-
sality class, but also the distribution functions and lim-
iting processes are shared by discrete models and contin-
uum equations,4 and by experimental systems, from tur-
bulent liquid crystals5 to drying colloidal suspensions.6

In this work we assess the dependence on substrate
dimensionality of the asymptotic scaling behavior of a
whole family of nonlocal equations that feature the basic
symmetries of the KPZ equation7

∂thk(t) = (νkµ −Kk2)hk(t) +
λ

2
F [(∇h)2]k + ηk(t). (2)

Even for cases in which, as expected from universality
arguments, these models display KPZ critical exponent
values, their behavior deviates from KPZ scaling for in-
creasing system dimensions.8 Such a fragility of KPZ uni-
versality contradicts naive expectations, and questions
straightforward application of universality principles for
the continuum description of experimental systems. Still,
we find that the ensuing limit distributions coincide with
those of the KPZ class in one and two dimensions (see
Fig. 1), demonstrating the robustness of the latter under
changes of the critical exponent values.
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FIG. 1. Height distribution P (χ) for Eq. (1) and Eq. (2)
for µ = 3/2, 7/4 in case of one- and two-dim. substrates. The
solid line is the TW-GOE distribution expected for d = 1.9
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