
Smart Inference and Criticality

Jorge Hidalgo∗1, Jacopo Grilli2, Samir Suweis2, Miguel Á. Muñoz1, Jayanth R. Banavar3, Amos Maritan2
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3Department of Physics, University of Maryland, College Park, MD 20742, Maryland (USA)

There is increasing evidence that some aspects of liv-
ing systems exhibit critical-like behavior1. One can find
examples ranging from flock dynamics to regulatory ge-
netic networks and neural avalanches in the brain. How-
ever, understanding why this happens and the mecha-
nisms that bring individuals to exhibit criticality is still
unclear.
To shed some light on such a general question, we

present a different perspective to understand critical-
ity, in the context of Information Theory2. Within this
framework, we sketch some of the general aspects of liv-
ing systems modeling them as inferring systems.
We implement two variants of our model, inspired by

the genetic algorithm. In a nutshell, we have a commu-
nity of individuals coping with an external environment,
gathering the information coming from different sources.
We find that the best strategy to do it efficiently is to
tune their parameters in the vicinity of the critical point,
provided that there is any. But even in the absence of
any external sources, the same result still applies when
individuals, far away from criticality, try to cope with
each other. The critical point becomes a global attractor
in response to this smart inference.
Mathematically, we encode a source of stimuli ~s =

(s1, ..., sN ) in a distribution Psrc(~s|~α). Allowing param-
eters ~α to vary, different sources can be modeled. On
the other hand, each of the individuals in the com-
munity seeks to represent, with the largest possible fi-
delity, the essential aspects of the stimuli coming from

the source in a distribution Pmap(~s|~β). Different val-

ues of the parameters ~β accounts for different maps.
Finally, to measure the ‘closeness’ between both distri-
butions, Information Theory provides a robust measure

through the Kullback-Leibler divergence, DKL(~α|~β) =
∑

~s
Psrc(~s|~α) log

(

Psrc(~s|~α)/Pmap(~s|~β)
)

, which quantifies

the loss of information when the map is used to approx-
imate the source:
In the first model, we have a community of M individ-

uals, each one characterized by its internal parameters ~β.
At every time step, S sources are generated at randomly
from a pool ρsrc(~α). Then, we kill one of the individuals
with a probability proportional to the mean KL diver-
gence with respect to the environment,

Pkill(i) ∝
1

S

S
∑

k=1

DKL(~αk|~βi), i = 1, ...,M. (1)

The unlucky individual is replaced by another one in the
community, and then we introduce a perturbation in the
parameters with a small probability.

When the process is iterated, if the internal map
presents a continuous phase transition, and only when
the environment ρsrc is highly heterogeneous, parameters

fall down in the vicinity of the critical point, ~β = ~βc.
In the second model, there is no a priori choice for the

pool of sources, and the community plays itself the role
of the environment. In other words, individuals evolve
trying to ‘understand’ each other. At every time step, S
individuals are picked at randomly, and one of them is
killed with a probability proportional to the mean DKL

respect to the other (S − 1) individuals. Mutations are
introduced again with a small probability.
In this case, and regardless of the initial conditions,

complexity emerges and individuals’ parameters tune
themselves in the critical point.
In summary, the observed criticality in living systems

can be understood as a result from the necessity of coping
with many diverse external conditions and their ability
of building up accurate maps of the environment.
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FIG. 1. Sketch of the two computational models.
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