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Scale invariant, two-dimensional surfaces that are
anisotropic in space abound in Science and Technol-
ogy, for systems spanning many orders of magnitude in
length scales. Examples range from epitaxial thin films
in nanoscience1 to micro and macroscopic crack forma-
tion in solids,2 to geological systems, such as landscape
evolution induced by rivers.3 Mathematically, the sur-
faces that occur in these and many other systems are
self-affine fractals,4 whose fractal dimension (or, equiv-
alently, roughness exponent) differs, depending on the
direction along which it is measured. Due to the lack
of characteristic distances, the scaling behavior just de-
scribed is a form of anisotropic critical behavior,5 which
moreover often occurs without the need of parameter
fine-tuning that adjusts the system to a critical point.
These are thus examples of so-called generic scale in-
variance (GSI).6 A context for this type of behavior, in
which anisotropy has remained relatively little studied,
is that of surface kinetic roughening.4 In this work we
pursue a continuum description of GSI systems through
stochastic partial differential equations. Our cases of in-
terest will be those conditions that lead to GSI while
applying to the most important universality classes in
surface kinetic roughening. Namely,6 systems with non-
conserved dynamics, like the celebrated Kardar-Parisi-
Zhang (KPZ) equation,7 or else systems with conserved
dynamics and non-conserved noise, like e.g. the so-
called conserved KPZ (cKPZ) equation.8 Remarkably,
the anisotropic generalizations of the two previous equa-
tions, namely, the so-called anisotropic KPZ (aKPZ)9

and conserved anisotropic KPZ (caKPZ) equations,10 do
not lead asymptotically to anisotropic behavior (strong
anisotropy, SA). Rather, in spite of being nominally
anisotropic, they lead to isotropic asymptotics (weak
anisotropy, WA), in universality classes that depend on
parameter conditions. This fact contrasts strikingly with
the unambiguous observation of SA in experiments on
surface kinetic roughening for two-dimensional interfaces,
see Ref. 11 and references therein.
In this work we focus on a number of representative

equations, like the Hwa-Kardar equation, proposed in the
context of self-organized criticality,12 and both the con-
served and non-conserved anisotropic KPZ equations.9,10

All of them display GSI, and remained outside our previ-
ous analysis,13 due to the unavailability of accurate ap-
proximations through linear equations for most of the
cases. Thus, here we employ techniques that in princi-
ple can tackle strongly non-linear systems, such as the
Dynamic Renormalization Group and direct numerical

simulations. We show14 that for non-conserved dynam-
ics SA simply does not occur, even for special conditions
under which only one of the nonlinearities is suppressed.
On the other hand, for systems with conserved dynamics
SA can be obtained, and even whole families of equations
can be formulated which display this property. How-
ever, both in the presence and in the absence of the shift
symmetry h → h + const., this seems only possible for
“incomplete” equations in which one of the nonlinear-
ities is suppressed. In general, conditions of this type
depend critically on details of the dynamics that is being
described, acting as special constraints, and are in this
sense non-generic in parameter space. Hence, they can-
not be obtained from simple-minded derivations of the
equations of motion based on symmetries and conserva-
tion laws.
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