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Clapping audiences, pedestrians in the London’s mil-
lennium bridge, and flashing fireflies offer spectacular
examples of collective synchronization. This pervasive
tendency towards synchrony also occurs at the micro-
scopic level, where heart pacemaker cells self-organize
their rhythmic activity to initiate the heartbeat. In 1967,
Arthur Winfree proposed a mathematical model' that
successfully replicated this natural phenomenon of self-
organization in time, and initiated a prolific research pro-
gram on collective synchronization. Only a few years af-
ter Winfree’s seminal paper, Kuramoto proposed a model
singularly amenable to mathematical analysis?, which
rapidly became the canonical model to mathematically
investigate synchronization phenomena.

Despite their importance and generality, Kuramoto-
like models —in which interactions are expressed by
phase differences— are approximations of more realistic
models such as the Winfree model, and typically their pa-
rameters do not have a simple mapping with biologically
meaningful parameters. In contrast, the Winfree model
incorporates explicit pulse-like interactions and phase re-
sponse curves (PRCs) that are customarily obtained from
experiments or from biologically realistic conductance-
based models.

In this contribution we report on the first complete
mathematical analysis of the Winfree model. Winfree
considered of a large population of pulse-coupled oscilla-
tors, and the assumtion of weak coupling permited him
to describe the state of each oscillator solely by its phase
variable 6:

0; = wi + Q(6:) P(6;), (1)

2] o

1

J
where € controls the coupling strength, and the oscilla-
tors are labeled by ¢ = 1,..., N > 1. Heterogeneity is
modeled via the natural frequencies w;, which are drawn
from a probability distribution g(w). The PRC function
Q, measures the degree of advance or delay of the phases
when the oscillators are perturbed. We adopt here a PRC
with a sinusoidal shape:

Q(0) =sin B —sin(0 + B) (2)

We complete the definition of system (1) with the smooth
pulse-like signal:

P(0) = an(1+ cos)™ (3)

Here n > 1 allows to control the width of the pulses, and
a, is a normalization constant.

Our most important finding? is that the Winfree model
(1) with the family of PRCs in Eq. (2) belongs to a family
of systems that have asymptotic dynamics in a reduced
space, called Ott-Antonsen manifold*. This important
property allows to exactly describe the dynamics of the
Winfree model with only two ODEs for Lorentzian
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Using this low-dimensional description, we fully investi-
gate the dynamics of the Winfree model in terms of four
parameters: A, e, 3, and n controlling the spread of the
natural frequencies, the coupling strength, the PRC, and
the pulses’ width, respectively.

Interestingly, as a result of our study, we find that
brief pulse-like interactions generically favor synchroniza-
tion, what could be conjectured as a reason for their oc-
currence in nature. This result is not captured using
Kuramoto-like models, since these models are only valid
for weak coupling and low frequency heterogeneity.

Finally, the potential of our findings is illustrated un-
covering a variety of chimera states in networks of pulse-
coupled oscillators, which include a new class of chimeras
with chaotic dynamics. All in all, we believe our results
will foster theoretical advances on the collective dynam-
ics of oscillators’ systems, upgrading the mathematical
basis of macroscopic synchronization beyond Kuramoto-
like models.
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